1. TITLE OF CONSTITUENT BODY and NAME OF REPORTER
International Subcommission on Triassic Stratigraphy

SUBMITTED BY (with contact information)
Dr Michael ORCHARD, Chairman
625 Robson Street,
Vancouver, BC, V6B 5J3
Canada
Tel. ** 604 666 0409
Email morchard@nrcan.gc.ca

2. OVERALL OBJECTIVES, AND FIT WITHIN IUGS SCIENCE POLICY

Rationalization of global chronostratigraphical classification.
Intercalibration of fossil biostratigraphies, integrated zonations, and recognition of global datums.
Establishment of magneto- and chemo-stratigraphic scales.
Definition of Stage boundaries and selection of global stratotype sections.
Correlation of Triassic rock successions and events, including marine to non-marine.
Climatic evolution and modeling.

The objectives satisfy the IUGS mandate of fostering international agreement on nomenclature and classification in stratigraphy; facilitating international co-operation in geological research; improving publication, dissemination, and use of geological information internationally; encouraging new relationships between and among disciplines of science that relate to Triassic geology world-wide; attracting competent students and research workers to the discipline; and fostering an increased awareness among individual scientists world-wide of what related programs are being undertaken.

3. ORGANIZATION

STS is a Subcommission of the Commission on Stratigraphy.
Officers (chairman, two vice-chairmen, secretary), Editor/ Webmaster of newsletter Albertiana, voting members (25), and corresponding members (~100). The Secretary hosts a web site for STS announcements and task group discussions.

Subcommission members represent a broad spectrum of specialized stratigraphical disciplines from those countries or regions where Triassic rocks are extensively studied in relation to fundamental and/or applied geological research. Current research activities and future plans are communicated through publication of the bi-annual STS newsletter Albertiana as both hardcopy and web release.

3a. Officers for 2004-2008:

Chair: Dr. Michael J. Orchard, Canada
Vice-Chair: Prof. Yin Hongfu, China
Vice-Chair: Prof. Marco Balini, Italy
4. INTERFACES WITH OTHER INTERNATIONAL PROJECTS

IGCP Project 467: Triassic time and trans-Panthalassan correlations
IGCP Project 458: Triassic/Jurassic Boundary Events.
CHRONOS/SPS: co-sponsors of Chaohu meeting, 2005.
InterRad: co-sponsors for Wellington, New Zealand meeting, 2006.
Pander Society: co-sponsors for ICOS1, 2006

5. CHIEF ACCOMPLISHMENTS AND PRODUCTS IN 2006

Publications

Four volumes focused on Triassic time and stratigraphy moved forward or were conceived during 2006:

1. Editing of contributed papers from the Chaohu meeting was completed for a special volume of *Palaeo3* on the *Permo-Triassic Boundary Events and Early Triassic Biotic Recovery*. The volume (special editors, Thomas Algeo, Daniel Lehrmann, Michael Orchard, and Tong Jinnan) features 26 papers that are now submitted to the Palaeo3 editors.

2. Contributed papers from the New Zealand Triassic Symposium *Triassic time and trans-Panthalassan correlations* are planned for a volume of *Stratigraphy*, with special editors Hamish Campbell and Michael Orchard.

3. Contributed papers from the Svalbard meeting are planned for *Polar Research*.

4. Proceedings of the Global Triassic meeting in New Mexico will be available as a *Bulletin of the New Mexico Museum of Natural History and Science*.

After publication of three issues of *Albertiana*, the official newsletter of the Triassic Subcommission, in 2005 there was a hiatus but the next issue, #34, was released in November, 2006. Albertiana #35 is due for release in January, 2007.

The primary aim of *Albertiana* is to promote the interdisciplinary collaboration and understanding among members of the Subcommission and within this scope serves as a platform for announcements, meeting reports, business minutes, reviews, and Triassic literature compilations as well as preliminary notes, progress reports, and articles on Triassic research. Electronic versions are also available in PDF format at http://www.bio.uu.nl/%7Epalaeo/Albertiana/Albertiana01.htm.

Meetings:

March 19-24, 2006. *Circum-Panthalassa Triassic Faunas and Sequences*. Te Papa Tongarewa, Museum of New Zealand, in Wellington, Wellington, New Zealand. The conference was co-
sponsored by InterRad, IGCP Project 467, the Subcommission on Triassic Stratigraphy (STS), and the Institute of Geological and Nuclear Sciences (GNS).

In attendance were 120 participants came from 19 countries, who presented a total of 71 talks and 32 posters. This included 17 plenary talks, nine of which were open to public, which addressed the key themes of the conference: Triassic catastrophes and their consequences, biological indicators of oceanographic change, micropaleontological methodologies for the 21st century and radiolarian solutions to tectonic problems. A symposium on Circum-Pacific Triassic Stratigraphy & Correlation was held, and conference excursions included six field trips that covered almost every corner of New Zealand, including the Permian-Triassic boundary of Northland within Waipapa terrane (photo),

Field trip participants view the Permian-Triassic boundary succession at Arrow Rocks, Oruatematu Island, Northland. Photo C. Hollis, GNS

key Triassic–Early Jurassic sections in Murihiku terrane on the North Island’s west coast, a mid-conference excursion to examine Triassic rocks of Torlesse composite terrane exposed on Wellington’s south coast, and a post-conference excursion to Southland viewing the key stratotype sections for six of the eight local Triassic stages. A full report of the conference and field trips, and a compendium of Triassic abstracts compiled by Hamish Campbell, can be found on the IGCP467 website (http://paleo.cortland.edu/IGCP467/. A full Programme and Abstracts is downloadable from http://www.gns.cri.nz/interrad/.

July 17-21, 2006. The First International Conodont Symposium (ICOS1), in Leicester, England included a joint STS sponsored Symposium on Triassic Conodonts: Taxonomy and Time Scales. This attracted 15 talks and posters, and a full day was devoted to boundary discussions amongst a small group of Triassic researchers.

Seventy participants from 15 countries attended the conference. A total of 34 talks were presented as well as 27 posters, with particular emphasis on the Boreal Triassic. The last day of the conference was devoted to a full-day excursion to the Festningen section, where rocks from Late Permian to Early Cretaceous were visited. Emphasis was also given to show interaction between basic scientific and exploration activity of the Triassic succession of the Barents Sea Shelf. Abstracts and introduction to the Triassic of Svalbard can be found in the conference volume that can be accessed at http://natmus.uio.no/triassic-2006/. Besides the extended abstract volume in the series Abstracts and Proceedings of the Geological Society of Norway, a conference volume in Polar Research is planned.

Organization of the Global Triassic meeting in Albuquerque, May 2007 (see below) progressed, including a road log for the planned field excursion in Nevada.

Progress on outstanding Triassic GSSPs:

Induan-Olenekian: Following the proposal for the I/O boundary GSSP at the Chaohu section in China, work focused on completing the formal publication of the conodont data from Chaohu (Zhao et al., in press, Palaeo3) and completion of work on an alternate candidate at Muth, Spiti. A study of the conodonts from Spiti was completed by M. Orchard and copy distributed to task group members in June 2006. Several new taxa were identified, as well as several described first from Chaohu. A new chemostratigraphic profile for Spiti produced by S. Richoz shows a positive excursion and turning point coincident with the appearance of Rohillites and Kashmirites, the ammonoid chronology having been worked out in detail by L. Krystyn. Data from H. Bucher and his team working in Jinya, South China have reported the same situation there. This isotope datum, which corresponds also to the appearance of the conodonts Neospathodus waageni sensu lato and Ns. posterolongatus in Spiti, evidently correlates with a position well below the appearance of those conodonts in the Chaohu section. Meanwhile, the considerable discussion on this boundary that took place during and after the Svalbard meeting has been synthesized by task group leader Y. Zakharov and will be published in Albertiana 34. In the same issue of Albertiana is further work on the Chaohu sections, including bivalves, ammonoids and palynomorphs.

Olenekian-Anisian: At the Svalbard meeting, E. Grädinaru presented data on the ammonoids and nautiloids of Desli Caira and especially their stratigraphic value. The boundary is placed between beds with Deslicairites simionescui n. g. n. sp., Procarnites kokeni and other upper Spathian ammonoids below and the Paracrochordiceras-Japonites Beds of basal Anisian age above. Especially important for correlation with the Boreal Realm is the outstanding occurrence of olenekitids (Deslicairites, ?Svalbardiceras) in the topmost Olenekian of the Tethys and of ?Karangatites at the very base of the Anisian at Desli Caira. Karangatites is the zonal marker for the base of the Anisian in Arctic Siberia.

The use of the FAD of the conodont Chiosella timorensis as a datum for the O-A boundary was challenged due to variation in its taxonomic treatment and evolution in our understanding of the group leading to historical records of the species occurring within Olenekian strata. A study of Chiosella based on the collections from both Desli Caira and Guandao was undertaken in order to clarify its taxonomy and demonstrate its utility as a global index. A paper on this topic will be published in Albertiana #34. It is anticipated that this is the final hurdle prior to resolution of this boundary.
Ladinian-Carnian – M. Gaetani, the task group chair, distributed a questionnaire in June 2006 concerning the status of the boundary deliberations and the pros and cons of various fossil criteria. An outcome of this was that, in spite of a lack of an ancestor for *Daxatina*, ammonoids were favored for definition of the boundary. Marco Balini, the principal worker on the ammonoid faunas of this boundary interval visited the Smithsonian Museum for comparative studies and then completed his collections in South Canyon, Nevada. He reports a much more detailed view of the lithologic as well as of the faunal succession, with bed-by-bed data from 5 sites: A, B, D, E, F, three of which have yielded conodont fauna. Not only *Daxatina*-like forms, but also forms with true *Trachyceras*-like suture line are identified in the upper part of the studied sections above the occurrence of *Frankites sutherlandi* and of *Halobia*, and these are the focus of present study. A preliminary report on the occurrence of *Frankites sutherlandi* at South Canyon was completed.

Carnian-Norian – some discussions during ICOS1 centered on the suitability of key C/N boundary conodont taxa for intercontinental correlation. It was agreed amongst those present that the FAD of *Epigondolella quadrata*, a higher level than those previously considered, might be the most suitable in the absence of cosmopolitan taxa prior to that level. This would place the boundary within the Kerri Zone rather than at its base. The working group is currently being polled on this suggestion, which has had mixed reviews. Two new PhD students at the University of Milan began work on ammonoids, halobiids, and conodonts of the Pizzo Mondello section and surrounding areas. Plans to visit Williston Lake to complete C-N studies began.

Norian-Rhaetian - At Steinbergkogel in Austria, one of the potential GSSP candidates, the FAD of the conodont *Misikella posthernsteini* has been proven within a phylomorphogenetic cline to be isochronous with the FO of the ammonoid *Cochloceras*. This well-constrained bioevent is closely above the FO of the conodont *Misikella hernsteini* and a magnetic polarity change from a long normal to a well developed reversed interval allowing an additional and independent correlation tool of this boundary option 1. The distinctive dinoflagellate change, which occurs with the FO of *Rhaetogonyaulax rhaetica* in the Zlambach section, is stratigraphically higher and corresponds to another ammonoid change with the FO of the widely distributed genera *Cycloceltites* and *Vandaites*: this is boundary option 2. Preliminary data show no significant C-isotope excursions with either of the two options.

6. CHIEF PROBLEMS ENCOUNTERED IN 2006

As in recent years, the Chair’s ability to fulfil his STS duties is compromised by the new government program structure and lack of funds and ‘approval’ for foreign travel. Similar financial problems face most task group members. Disruption of the publication of the STS newsletter Albertiana #34 caused a back up of articles and caused delay in communications although the web site hosted in Cortland continued to post news and announcements.

7. SUMMARY OF EXPENDITURES IN 2006

ICS FUNDING
Subcommission allocation □1300

TOTAL □1300

STS EXPENDITURES
Meeting/field workshop schedule

This international symposium will be devoted to all aspects of the Triassic System with particular focus on the Triassic timescale and Triassic biotic events. It will be an official meeting of the STS and a final meeting of IGCP 467 on Triassic Time and Correlation. The meeting will be three days of talks and posters at the New Mexico Museum of Natural History in Albuquerque. Focus will be on all outstanding Triassic GSSPs. A pre-meeting fieldtrip will visit classic marine Middle-Upper Triassic sections in Nevada (19-21 May). Proceedings of the meeting will be available as a Bulletin of the New Mexico Museum of Natural History and Science.

May 27-31, 2007
Field workshop on the *Carnian-Norian boundary*, Williston Lake, NE BC, Canada.
A multidisciplinary team of task group members will spend some days in this classic Triassic area focusing on the CNB at several localities with the goal of completing the collection of data necessary for a GSSP proposal.

GSSP deliberations

The I-O Boundary: Full disclosure of new data from Spiti to task group members this Fall and careful comparison with Chaohu sections should precede a decision on the GSSP. The Task Group Chair writes that voting on I-O GSSP candidates will take place winter/spring, 2006/7. Three main questions remain: (1) What is the explanation for anomalies in conodont occurrences in the two candidate sections? (2) Is it possible to use volcanic ash layers from IOB beds of the Chaohu section for radio-isotopic geochronological calibration, which could partly compensate for the poor ammonoid control? (3) How much of a disadvantage is the absence of an I-O magnetostratigraphy in Spiti?

The O-A Boundary: Publication of a revised *Chiosella* taxonomy and conodont succession; completion of the O-A GSSP proposal for Desli Caira.

The L-C Boundary: Publication of the preliminary report on the occurrence of *Frankites sutherlandi* at South Canyon, Nevada; preparation of a general description of the succession for the field guidebook of the Albuquerque meeting; presentation of data on *Trachyceras* for the same meeting; preparation of report on ammonoid-conodont-bivalve fossil calibration across the boundary beds. Completion of the final report for Spiti by the Spring. Most new data should be available for the May 2007 meeting where a decision on the GSSP will be close.

The Italian Group of palynologists from Perugia and Padova universities plan to submit papers for both the Albuquerque meeting and to Albertiana in the next few months. This involves revision of all the material about the Stuores section, and coeval sections in which important palynological events can be calibrated with the FAD of *Daxatina canadensis*. A magnetostratigraphic sampling of an auxiliary section in Eastern Dolomites is planned for April.
The C-N Boundary: New data from Pizzo Mondello is anticipated with progress in PhD studies. A field workshop to Williston Lake in May 2007 is planned with the goal of completing the data set for sections there.

The N-R Boundary: A proposal for a GSSP at Steinbergkogel is anticipated.

Publications:
Two issues of Albertiana.
Appearance of Special Volume of Palaeo3 on *Permo-Triassic Boundary Events and Early Triassic Biotic Recovery*.
Editing of Special Volume of *Stratigraphy on Triassic time and trans-Panthalassa correlations*.
Compilation of contributed papers for *Polar Research on The Boreal Triassic*.
Compilation of Proceedings and contributed papers for the *Bulletin of the New Mexico Museum of Natural History and Science on the Global Triassic*.

9. BUDGET AND ICS COMPONENT FOR 2007

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albertiana - STS Newsletter production</td>
<td>500</td>
</tr>
<tr>
<td>Support, Albuquerque meeting, May 2007</td>
<td>1,500</td>
</tr>
<tr>
<td>Support, Williston Lake C-N field workshop, May 2007</td>
<td>1,500</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,500</td>
</tr>
</tbody>
</table>

Potential funding sources outside IUGS
Cost sharing with IGCP Project 467, Triassic time and trans-Panthalassan correlation.
Dept. of Geosciences, University of Utrecht provides facilities for the production of Albertiana and hosts its web-site.
Dept. of Geosciences, Cortland, New York hosts an STS website.
National research and travel grants provide support to individuals, and host institutions provide in-kind support to the executive and task group chairs.

10. REVIEW CHIEF ACCOMPLISHMENTS OVER PAST FIVE YEARS (thru 2006)

Organization
Renewal of STS voting and corresponding membership in 2001. Voting membership was reduced from 31 to 26, and a broader geographical and disciplinary base established. This was the first significant turnover of voting members since the inception of the STS. A summary of all members’ research interests was published in Albertiana 26. Four new GSSP Task Group chairs were appointed. A second renewal took place in the Fall of 2004 with 11 new voting members amongst 25: this addressed the ICS recommended limit for terms served as well as lapsed members. A second web site was created to supplement that of Albertiana and host discussion groups.

Meetings/ workshops

Publications
12 issues of Albertiana (#24-34) were published in 2000 thru 2006. Each of these issues was made available for download from the web.

Abstract volumes/ field guides prepared for meetings in Romania, Oman, Stuores, Felsoors, Vancouver, St Cristina, Spiti, Chaohu, Wellington, Leicester, and Longyearbyen.

Task groups
The Permain-Triassic boundary was agreed and ratified: the first appearance of the conodont Hindeodus parvus in the middle of bed 27, within the Yinkeng Formation at Meishan, Changxing County, Zhejiang Province, South China. A formal celebration at the GSSP took place during August 2001.

The Induan-Olenekian boundary Task Group, formed in 1997, reviewed the options for a GSSP in the Russian Far East but found them lacking because of strong remagnetization of Triassic rocks and poor recovery of I/O conodont assemblages. A section in Chaohu, Anhui Province, China became the focus of intensive study. Ammonoid and conodont biostratigraphy, magnetostratigraphy, and chemostratigraphy were undertaken. The FAD of the conodont Neospathodus waageni was identified as a potential GSSP datum: it lies 26 cm below the FAD of the flemingitid ammonoids, and is located slightly prior to the top of the second Triassic normal magnetozone, and the peak of the first Triassic positive excursion of δ13C. A preliminary conodont biostratigraphy for Chaohu was summarized in Albertiana #29 (2004), and the ammonoids described in Albertiana #31. This boundary and proposed GSSP was the focus of a meeting held in China during June 2005, at which time many members of the task group were able to examine the section.

After 2004 field work carried out in Muth, Spiti, an evaluation of the Mikin Fm. for establishing an Induan-Olenekian boundary GSSP candidate was begun. The rocks include top Gyronites, complete Flemingites, and basal EuFlemingites ammonoid intervals. Three boundary options based in ammonoids were suggested and provisionally tied to the FAD of Neospathodus waageni subspp. Initial conodont studies identified useful taxa common to Chaohu. The ammonoid record appears superior to that at Chaohu but the section lacks a magnetostratigraphy.
A field workshop was held at Desli Caira, in Dobrogea, Romania, in June 2000, to view the **Olenekian-Anisian boundary** candidate. Major work was undertaken on ammonoid, nautiloid, conodont, and foraminiferid biostratigraphy. Both chemo- and magneto-stratigraphic analyses were largely completed. At the 2003 field workshop in St Christina, a conodont workshop amongst task group members agreed that the appearance of the conodont *Chiosella timorensis* at the base of bed 7 was a suitable datum for GSSP definition. Further geochemical sampling was undertaken in 2004 to fill a perceived gap in the coverage at the principal section. Further work has been undertaken on correlative sections in South China, Spiti, and South Primorye, Russia. In particular, a section at Guandao in the Nanpanjiang Basin of Guizhou Province, South China produced an excellent dataset, including isotopic dates from about this boundary (~247 Ma).

At Desli Caira, the FAD of the conodont *Chiosella timorensis* corresponds to a significant change in the ammonoid fauna, and to the peak of a positive C isotope excursion; it falls within a short reversed polarity interval situated between two short normal intervals that follow the longer reversed interval in the upper Spathian. The Guandao section lacks rich ammonoid faunas but it is relatively expanded and has an excellent conodont succession and numerous dated ash beds that place the O-A boundary at 247.2 Ma. It too has a positive isotope excursion that peaks at the appearance of *C. timorensis*, and a magnetostratigraphy that places that datum in the same context as in Romania.

Intensive research was undertaken on **Anisian-Ladinian boundary** GSSP candidate sections in Italy and Hungary. A dedicated task group was formed in 2001 and presentations focused on the GSSP options in the Hungary meeting of 2002. A formal task group voting membership and a schedule for the choice of base-Ladinian stratotype was agreed at the St Christina Meeting in 2003, and three alternate proposals were published in Albertiana #28. The choice was concluded in a series of votes within STS during 2004; the IUGS ratified the choice on 21st March 2005. The GSSP is thus defined at the top of "Chiesense groove", located about 5 m above the base of the Buchenstein Beds at Bagolino, northern Italy; the lower surface of the overlying thick limestone bed has the lowest occurrence of the ammonoid *Eoprotrachyceras curionii*. Secondary global markers in the uppermost Anisian include the lowest occurrence of conodont *Neogondolella praehungarica* and a brief normal-polarity magnetic zone. The GSSP level is bracketed by U-Pb single zircon age data, indicating that the boundary age is within the range 240-242Ma. A description of the GSSP was published in *Episodes*.

A field workshop in the Italian Dolomites during July 1998 focused on the section at Prati di Stuores, the subject of a formal **Ladinian-Carnian boundary** GSSP proposal. A dedicated task group was established in 2001. Subsequently fieldwork was carried out in two other regions: Spiti and Nevada. Studies in Spiti have included four expeditions, with two in Nevada. Crucial biostratigraphic data concerns the distinction between prospective index ammonoids *Daxatina* and *Trachyceras*, the FAD of the prospective conodont species *polygnathiformis*, and the appearance of the bivalve *Halobia*.

Work in the Dolomites included a very heavy resampling of the Prati di Stuores section which resulted in a single incomplete specimen of *Metapolygnathus polygnathiformis* near the bed with the FAD of *Daxatina*. The Padova research group sought new sections in the Eastern Dolomites to better document the interval between the top of *Daxatina* beds and base of *Trachyceras aon*. In Spiti, as in Prati di Stuores, *Daxatina* appears towards the top of the range interval of the genus *Frankites*, and *Trachyceras* overlaps with highest *Daxatina*. However, the FAD of the conodont *M. polygnathiformis* predates the oncoming of *Daxatina* by several meters. Doubtful *Halobia* still appear within the *Frankites* beds but well established occurrences are higher, within the beds with *Trachyceras*. The pros of the Spiti sections are the concurrent record of ammonoids, conodonts and bivalves, which allows the intercalibration of the bioevents. The cons are the
remagnetization of the section, the cooked out content in palynomorphs, and the accessibility limited to the summer months, due to the altitude.

In the successions in New Pass, Nevada, *Frankites sutherlandi* overlaps the lower part of the range of *Trachyceras* gr. *T. desatoyense*, several meters above the FAD of *desatoyense*. *Halobia* appears in the same beds from where *sutherlandi* was recovered and possibly is even older. The richest beds in ammonoids of the South Canyon section overlie a sudden facies change, with the drowning of a carbonate platform. South Canyon does not appear to be a possible GSSP candidate mostly because of the facies change and the remagnetization due to the nearby Cenozoic volcanic rocks. The section is, however, of great significance for large scale correlations of North America with the Tethyan realm.

The task group on the **Carnian-Norian boundary** was established in 2001. Key sections in Canada, Sicily, Slovakia, Turkey, and Oman have been studied resulting in an integrated bio-, magneto- and chemostratigraphic cross-correlation of key sections in the Tethys. The Pizzo Mondello section in Sicily contributes a magnetostratigraphic profile tied to a preliminary conodont zonation for the C-N boundary interval in Tethys. Alternate views of its correlation with the cyclostratigraphically calibrated Newark non-marine successions, place the base of the Norian at about 214 Ma or 228 Ma. A preliminary new conodont zonation from a potential GSSP at Black Bear Ridge, Western Canada was presented during a formal Workshop on Upper Triassic boundaries at the IGC in Florence in 2004. Comparisons between this Canadian data and the faunal successions of Tethyan sections has yet to reveal an ideal definitive taxon.

A **Norian-Rhaetian boundary** task group was formed in 2001. Sections in western Canada, USA, and Austria were studied and produced important ammonoid, bivalve, and conodont data. Magnetostratigraphic and chemostratigraphic studies were undertaken in Queen Charlotte Islands, Canada. Rock magnetism carried a Cretaceous overprint. A carbon isotopic anomaly was identified at a potential boundary where radiolarians show distinctive faunal change and which is the FAD of the conodont *Epigondolella mosheri*, which approximates the Amoenum Zone in North America. A field workshop in the Gabbs Valley Range of Nevada in March 2005 included sampling of both N/R and T/J boundary strata. Palynology results were disappointing, but the presence of the ‘Tethyan’ conodont *Misikella* was confirmed - a first for the North American autochthon.

In Austria, a section in the Hallstatt and Zlambach Formation produced good ammonoids, pelagic bivalves, conodonts, rare radiolarians, and palynomorphs, as well as a magnetostratigraphy. A distinctive dinoflagellate change occurs midway through the Zlambach section with the FO of *Rhaetogonyaulax rhaetica*, a datum that may have potential in correlation with shallow marine and/or high latitude basins.

11. OBJECTIVES AND WORK PLAN BEYOND 2007.

Complete GSSPs!
APPENDIX [Names and Full Addresses of Current Officers and Voting Members]

Subcommission officers (with addresses)
Chairman: M. J. Orchard, Geological Survey of Canada, 625 Robson Street, Vancouver, B.C. V6B 5J3, Canada, e-mail: morchard@nrcan.gc.ca
Vice Chairman: Yin Hongfu, China University of Geosciences, Yujiaoshan, Wuhan, Hubei, 430074, Peoples Republic of China. hfvin@cug.edu.cn
Vice Chairman: Marco Balini, Dipartimento di Scienze della Terra, via Mangiagalli 34, I-20133 Milano, Italy. Marco.Balini@unimi.it
Secretary/STS web: Christopher A. McRoberts, Department of Geology, State University of New York at Cortland, P.O. Box 2000, Cortland, New York 13045 USA. mailto:mcroberts@cortland.edu
Albertiana Editor/Webmaster: Wolfram M. Kuerschner, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands. W.M.Kuerschner@bio.uu.nl

Task Groups and their officers
Base Induan (Triassic): Yin Hongfu, China. hfvin@cug.edu.cn
Base Olenekian: Y. Zakharov, Russia. fegi@online.marine.su
Base Anisian: E. Gradinaru, Romania. egradin@geo.edu.ro
Base Ladinian: A. Baud, Switzerland. Aymon.Baud@sst.unil.ch
Base Carnian: M. Gaetani, Italy. maurizio.gaetani@unimi.it
Base Norian: M. Orchard, Canada. morchard@nrcan.gc.ca
Base Rhaetian: L. Krystyn, Austria. leopold.krystyn@univie.ac.at
Non-marina auxiliaries: S. Lucas, USA. SLucas@nmmnh.state.nm.us

List of Voting Members
Yoshiaki Aita, Utsunomiya, JAPAN aida@cc.utsunomiya-u.ac.jp
Marco Balini, Milan, ITALY marco@e35.gp.terra.unimi.it
On N. Bhargava, INDIA onbhargava@yahoo.co
Hugo Bucher, Zurich, SWITZERLAND Hugo.Bucher@pim.unizh.ch
Hamish Campbell, Dunedin, NEW ZEALAND H.Campbell@gns.cri.nz
Mark Hounslow, Lancaster, ENGLAND m.hounslow@lancaster.ac.uk
Dennis Kent, Palisades, USA. dkv@rci.rutgers.edu
Heinz W. Kozur, Budapest, HUNGARY kozurb@helka.iiif.hu
Leopold Krystyn, Vienna, AUSTRIA leopold.krystyn@univie.ac.at
Wolfram M. Kuerschner, Utrecht, NETHERLANDS w.m.kuerschner@bio.uu.nl
Max Langer, BRAZIL mclanger@ffclr.usp.br
Spencer Lucas, Albuquerque, USA. SLucas@nmmnh.state.nm.us
Christopher R. McRoberts, Cortland, USA mcroberts@cortland.edu
Manfred Menning, Potsdam, GERMANY menne@gfz-potsdam.de
Paolo Mietto, Padova, ITALY mietto@epidote.dmp.unipd.it
Alda Nicora, Milano, ITALY Alda.nicora@unimi.it
Michael J. Orchard, Vancouver, CANADA morchard@nrcan.gc.ca
Bruce Rubidge, Wits, SOUTH AFRICA 106gar@cosmos.wits.ac.za
Kazem Seyed-Emami, Tehran, IRAN k.seydemami@kavosh.net
Michael A. Shishkin, Moscow, RUSSIA
Jinnan Tong, Hubei, CHINA
Attila Voros, Budapest, HUNGARY
Wolfgang Weitschat, Hamburg, GERMANY
Hongfu Yin, Hubei, CHINA
Yuri D. Zakharov, Vladivostok, RUSSIA

schnsz@orc.ru
 jintong@cug.edu.cn
 voros@zoo.zoo.nhmus.hu
 weitschat@geowiss.uni-hamburg.de
 hfyin@cug.edu.cn
 zakharov@fegi.ru